Referral Algorithm

UCSF Evaluation

Meets Inclusion Criteria

Offered 2 Options

In utero stem cell transplant & transfusion

In utero transfusion

Follow up at UCSF or local provider for repeat of IUT if needed

Maternal & newborn follow up 30 days post-delivery

1 year follow up of baby

UCSF Fetal Treatment Center
1855 4th Street
2nd Floor, Room A-2432
San Francisco, CA
94158-2549

1-800-RX-FETUS
(1-800-793-3887)
fetaltreatmentcenter@ucsf.edu
fetus.ucsf.edu

Alpha thalassemia major (ATM) is usually fatal in utero. Fetal blood transfusions are the only current treatment for supporting the fetus through pregnancy. Newborns need chronic transfusions to replace their red blood cells. Postnatal stem cell transplantation can be a definitive therapy but has numerous complications. In utero stem cell transplantation was developed as a strategy to address the challenges associated with transplantation after birth.

We have developed a new strategy of in utero stem cell transplantation with the goal to reduce postnatal morbidity and cure the fetus before birth.
The fetal immune system has unique features that make stem cell transplant before birth safer than treatment after birth. Since the mother and fetus tolerate each other during pregnancy (maternal-fetal tolerance), transplanting stem cells from the mother gives the best results.

Our group has tested this idea for over a decade and we have recently obtained approval from the FDA to perform a phase 1 clinical trial of maternal stem cell transplantation in fetuses with ATM.

The trial plan is to harvest stem cells from the mother’s bone marrow, prepare them for safe injection, and transplant them into the fetus along with an in utero transfusion (IUT). Transplanting stem cells concurrently with IUT minimizes additional procedural risk to the fetus, and takes advantage of a unique time period in development when the mother can be an ideal stem cell donor for her fetus.

Even if in utero transplantation does not cure the disease, it may make a postnatal bone marrow transplant from the mother safer. After birth, the newborns may need additional transfusions or no further treatment depending on how well the transplanted cells survive.

The goal of this study is to determine how well the mother and fetus tolerate stem cell harvesting and transplantation.

Step 0 – Identify at risk pregnancies

Thalassemia screening should be performed in patients of Southeast Asian, Middle Eastern, African, Mediterranean or Asian Indian ancestry with MCV <82 and normal iron studies.

Step I – Pre-UCSF Evaluation

Mothers who are carriers for the alpha thalassemia mutation and whose fetuses develop signs of anemia should undergo additional testing for confirmation of the fetal diagnosis or carrier status in both parents. Medical records can be sent to the UCSF Fetal Treatment Center for review.

Step II – UCSF Evaluation

Evaluation consists of an ultrasound, echocardiogram, and counseling by team members at the UCSF Fetal Treatment Center: fetal surgeon, hematologist, perinatologist, social worker, neonatologist, genetic counselor, and nurse practitioner. If the mother and fetus are found to be candidates, in utero stem cell transplantation will be offered.

Step III – In utero stem cell transplantation

Prior to 26 weeks gestation, the stem cell transplantation is performed concurrently with the IUT. Following this initial procedure, the fetus will likely require additional blood transfusions as part of standard ATM care. These transfusions can be coordinated through UCSF Fetal Treatment Center or patients may leave San Francisco to seek care with their local medical providers.

Step IV – Neonatal Follow Up

We will evaluate the blood of the newborn to determine how well the mother’s stem cells survive and engraft. We will then follow each patient for one year after in utero transplantation.

Inclusion Criteria

- Fetal anemia secondary to ATM
- 18–26 weeks’ gestation
- Adequate bone marrow harvest from maternal subject

Exclusion Criteria

- Presence of another birth defect that contributes to a significant morbidity or mortality risk
- Echocardiogram or ultrasound findings that indicate a high risk for fetal demise after intervention
- Maternal cardiac disease
- Evidence of mirror syndrome in mother
- Symptomatic maternal anemia
- Preterm premature rupture of membranes or active preterm labor