Thalassemias are inherited anemias caused by mutations in either the alpha or beta globin genes. These mutations result in decreased hemoglobin synthesis. If both parents carry mutations in the same globin gene each of their children has a 25% chance of inheriting a severe form of that thalassemia. Both alpha and beta thalassemia major require treatment with serial blood transfusions. Alpha thalassemia major is unique in that treatment, if pursued, should be initiated prenatally.

Globally, 5% of people carry a thalassemia trait. For people whose ancestry traces to Asia, the Pacific Islands, the Mediterranean, the Middle East, or Africa, carrier rates can be as high as 45%. Most people do not know their carrier status.

Types of Thalassemia

- **β Thalassemia Trait (β/−)**
 - 1 of 2 functioning beta globin genes
 - Can lead to slight microcytic anemia
 - Parents who are both positive for this trait are at risk for having a child with beta thalassemia major

- **β Thalassemia Major (−/−)**
 - 0 of 2 functioning beta globin genes
 - Individuals born with beta thalassemia major have severe anemia and require treatment with serial blood transfusions
 - These patients may be eligible for curative treatment with bone marrow transplant

- **α+ Thalassemia Trait (α/-α-)**
 - 2 of 4 functioning alpha globin genes, one on each chromosome
 - Can lead to slight microcytic anemia

- **α- Thalassemia Trait (αα/--)**
 - 2 of 4 functioning alpha globin genes on the same chromosome
 - Can lead to slight microcytic anemia
 - Parents who are both positive for this trait are at risk for a pregnancy with alpha thalassemia major

- **α Thalassemia Major (−/−) or Hb Bart's Hydrops Fetalis**
 - 0 of 4 functioning alpha globin genes
 - Leads to severe anemia in fetuses and can be fatal unless treated with in utero blood transfusions
 - Individuals born with alpha thalassemia major require treatment with serial blood transfusions and may be eligible for potentially curative bone marrow transplant

Diagnostic Codes and Parameters

<table>
<thead>
<tr>
<th>Complete Blood Count</th>
<th>Iron Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>85025</td>
<td>82728</td>
</tr>
<tr>
<td>• Hemoglobin <11 g/dL indicates anemia</td>
<td>• Serum Ferritin <30 ng/mL indicates iron deficiency anemia with or without thalassemia</td>
</tr>
<tr>
<td>• Mean Corpuscular Volume <80 fL indicates microcytic anemia</td>
<td></td>
</tr>
<tr>
<td>• Mean Corpuscular Hemoglobin <27 pg indicates hypochromic anemia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemoglobin Analysis</th>
<th>Genetic Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>83021</td>
<td>81364</td>
</tr>
<tr>
<td>• Hemoglobin Electrophoresis/HPLC Hb A2 >3.5% indicates beta-thalassemia trait ≤3.5% rules out beta thalassemia but does exclude alpha thalassemia</td>
<td>• Beta Globin Complete Gene Sequencing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imaging for ATM (Hb Bart’s Hydrops Fetalis)</th>
<th>Thalassemia diagnosis ICD-10 Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>76811</td>
<td>D56.3 Diagnosis of Parental Alpha or Beta Thalassemia Trait</td>
</tr>
<tr>
<td>76821</td>
<td>D56.0 Diagnosis of Alpha Thalassemia Major</td>
</tr>
<tr>
<td></td>
<td>D56.1 Diagnosis of Beta Thalassemia Major</td>
</tr>
<tr>
<td></td>
<td>O35.8XX0 Maternal care for suspected fetal condition</td>
</tr>
</tbody>
</table>
Prenatal screening for thalassemia

Maternal and Paternal Screening for Thalassemia Trait

Most couples are unaware of their risk for thalassemia in pregnancy. **Screening for thalassemia trait ideally occurs preconception or with the initial prenatal labs by assessing the patient’s CBC.** When microcytic anemia is detected, we recommend simultaneous maternal hemoglobin electrophoresis/HPLC and alpha globin gene sequencing, as normal hemoglobin electrophoresis/HPLC results do not exclude alpha thalassemia.

Prenatal Monitoring for ATM (Hb Bart’s Hydrops Fetalis)

If alpha-0 thalassemia trait is identified in both parents, education related to options including prenatal diagnosis and pregnancy management is essential. Because fetuses affected with alpha thalassemia major develop severe anemia and hydrops fetalis, monitoring the pregnancy for these complications (below) is necessary to mitigate risk to the mother and adverse sequelae to the fetus.

1. **Maternal and Paternal Screening for Thalassemia Trait**
 - Most couples are unaware of their risk for thalassemia in pregnancy.
 - **Screening for thalassemia trait ideally occurs preconception or with the initial prenatal labs by assessing the patient’s CBC.** When microcytic anemia is detected, we recommend simultaneous maternal hemoglobin electrophoresis/HPLC and alpha globin gene sequencing, as normal hemoglobin electrophoresis/HPLC results do not exclude alpha thalassemia.

2. **Prenatal Monitoring for ATM (Hb Bart’s Hydrops Fetalis)**
 - If alpha-0 thalassemia trait is identified in both parents, education related to options including prenatal diagnosis and pregnancy management is essential. Because fetuses affected with alpha thalassemia major develop severe anemia and hydrops fetalis, monitoring the pregnancy for these complications (below) is necessary to mitigate risk to the mother and adverse sequelae to the fetus.

Microcytic Anemia Detected at First Prenatal Visit: Hemoglobin <11mg/dL, MCV <80 fL, MCH <27pg

1. Serum Ferritin, Serum Iron, Total Iron Binding Capacity; Hemoglobin Electrophoresis + α-Globin Common Mutation Analysis if Patient is of High-Risk Ethnic Descent
2. Ferritin <30 ng/mL
3. Ferritin ≥30 ng/mL
4. Hemoglobin Electrophoresis + α-Globin Common Mutation Analysis; Further Clinical Evaluation

Ferritin <30 ng/mL

1. Iron supplementation
2. Hemoglobin Electrophoresis + α-Globin Common Mutation Analysis if Patient is of High-Risk Ethnic Descent

HbA2 >3.5%

1. Maternal β-Globin Gene Sequencing
2. Initiate Paternal Evaluation
3. One or Both Parents Positive for β Thalassemia Trait
4. One or Both Parents Positive for other α Thalassemia Trait
5. Both parents positive for α-0 Thalassemia Trait

Ferritin ≥30 ng/mL

1. Initial assessment for interstitial lung disease
2. Initiate Paternal Evaluation
3. One or Both Parents Positive for β Thalassemia Trait
4. One or Both Parents Positive for other α Thalassemia Trait
5. Both parents positive for α-0 Thalassemia Trait

Genetic Counseling and Maternal-Fetal Medicine to review prenatal testing and pregnancy surveillance option

1. Patient opts for early DNA diagnosis
2. Patient opts for non-invasive screening
3. Ultrasounds every 2 weeks beginning at 16 weeks. Add MCA Doppler at 18 weeks
4. Cardiomegaly, Signs of Hydrops Fetalis, and/or Fetal Anemia indicated by MCA velocity >1.5 MoM

Fetal Diagnosis via CVS, amniocentesis, or PUBS

1. Fetus Negative for α-Thalassemia Major
2. Fetus Positive for α-Thalassemia Major

Review of options: In Utero Transfusions, In Utero Stem Cell Transplantation Study, Expectant Management of Termination

1. **This tool is not a replacement for referral to genetic counseling, which may happen at any time in this pathway. Genetic counseling provides guidance for genetic testing and management options for families with pregnancies at risk for severe forms of thalassemia.**

2. **Ethnicities at high risk for thalassemia include: Asian (South, Southeast, Chinese), Pacific Islander, Mediterranean, Middle Eastern, and African**

3. **Rare mutations, such as delta-β-thalassemia, non-deletional alpha thalassemia, and others, may not be captured in this algorithm. In high-risk cases, or where hemoglobin electrophoresis is abnormal, consultation with a genetic counselor and/or hematologist is recommended.**

©2020 UCSF Benioff Children’s Hospitals